Types of trigonometric equations
1) Basic Equations

A) sin x = a
If sin x = a and α is a solution of the equation then :
- x = α + 2kπ, k E Z or
- x = 180° – α + 2kπ, k E Z
sin x = a –> {x = arcsin a + 2kπ, k E Z} {x = π – arcsin a + 2kπ, k E Z}

- Special Results
| 1) sin x = 0 | 2) sin x = 1 |
3) sin x = -1 |
| x = kπ, k E Z | x = 90° + kπ, k E Z |
x = 270° + 2kπ, k E Z |
B) cos x = a
If con x = a and α is a solution of the equation, then :
- x = α + 2kπ, k E Z or
- x = -α + 2kπ, k E Z
cos x = a –> x +- arccos a + 2kπ, k E Z

- Special Results
| 1) cos x = 0 | 2) cos x = 1 | 3) cos x = -1 |
| x =90° + kπ, k E Z | x = 360° + kπ, k E Z | x = 180° + 2kπ, k E Z |
C) tan x = a
If tan x = a and α is a solution of the equation then :
x = α + kπ, k E Z

D) cot x = a
If cot x = a and α is a solution of the equation then :
x = α + kπ, k E Z

2) Factorizing Equations

3) Equations with a common Ratio
- If cos x = cos a then —> x = a + 2kπ, k E Z
- If sin x = sin a then —> x = a + 2kπ or x = (π – a) + 2kπ, k E Z
- If tan x = tan a then —> x = a + kπ, k E Z
- If cot x = cot a then —> x = a + kπ, k E Z
4) Homogenous Equation in sin x and cos x
If the degree of all terms in an equation are the same, the equation is called a homogenous equation.
|
ax + by = 0 |
ax 2 + bxy + cy 2 = o |
